Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation.

نویسندگان

  • Erika D Nelson
  • Ege T Kavalali
  • Lisa M Monteggia
چکیده

DNA methylation is an epigenetic mechanism that plays a critical role in the repression of gene expression. Here, we show that DNA methyltransferase (DNMT) inhibition in hippocampal neurons results in activity-dependent demethylation of genomic DNA and a parallel decrease in the frequency of miniature EPSCs (mEPSCs), which in turn impacts neuronal excitability and network activity. Treatment with DNMT inhibitors reveals an activity-driven demethylation of brain-derived neurotrophic factor promoter I, which is mediated by synaptic activation of NMDA receptors, because it is susceptible to AP-5, a blocker of NMDA receptors. The specific effect of DNMT inhibition on spontaneous excitatory neurotransmission requires gene transcription and is occluded in the absence of the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2). Interestingly, enhancing excitatory activity, in the absence of DNMT inhibitors, also produces similar decreases in DNA methylation and mEPSC frequency, suggesting a role for DNA methylation in the control of homeostatic synaptic plasticity. Furthermore, adding excess substrate for DNA methylation (S-adenosyl-L-methionine) rescues the suppression of mEPSCs by DNMT inhibitors in wild-type neurons, as well as the defect seen in MeCP2-deficient neurons. These results uncover a means by which NMDA receptor-mediated synaptic activity drives DNA demethylation within mature neurons and suppresses basal synaptic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic Decoding of Neural Activity: eEF2 as a Biochemical Sensor Coupling Miniature Synaptic Transmission to Local Protein Synthesis

Activity-dependent regulation of dendritic protein synthesis is critical for enduring changes in synaptic function, but how the unique features of distinct activity patterns are decoded by the dendritic translation machinery remains poorly understood. Here, we identify eukaryotic elongation factor-2 (eEF2), which catalyzes ribosomal translocation during protein synthesis, as a biochemical senso...

متن کامل

Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis

DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...

متن کامل

O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?

Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...

متن کامل

O-5: Reprogramming of Paternal DNA Methylome during Spermiogenesis

Background Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs in the zygote. This process involves reorganisation of the patterns of 5-methylcytosine (5mC), a DNA modification associated with regulation of gene activity. Notably, both maternal and paternal genomes undergo Tet3-dependent oxidati...

متن کامل

An Effective Concentration of 5-Aza-CdR to Induce Cell Death and Apoptosis in Human Pancreatic Cancer Cell Line through Reactivating RASSF1A and Up-Regulation of Bax Genes

Background: Promoter hyper-methylation of tumor suppressor genes is a common event that occurs in cancer. As methylation is a reversible modification, agents capable of reversing an abnormal methylation status should help to combat cancer. 5-Aza-CdR is a DNA methyl-transferase inhibitor. The present study aimed to evaluate the effect of 5-Aza-CdR on the proliferation of human pancreatic cancer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2008